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Strength statistics of adhesive contact
between a fibrillar structure and a

rough substrate
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Equal distribution of load among fibrils in contact with a substrate is an important
characteristic of fibrillar structures used by many small animals and insects for contact and
adhesion. This is in contrast with continuum systems where stress concentration dominates
interfacial failure. In thiswork,we studyhowadhesion strength of a fibrillar systemdepends on
substrate roughness andvariability of the fibril structure,which aremodelledusingprobability
distributions for fibril length and fibril attachment strength. Monte Carlo simulations are
carried out to determine the adhesion strength statistics where fibril length follows normal or
uniform distribution and attachment strength has a power-law form. Our results indicate that
the strength distribution is Gaussian (normal) for both the uniform and the normal
distributions for length. However, the fibrillar structure having normally distributed lengths
has higher strength and lower toughness than one having uniformly distributed lengths. Our
simulations also show that an increase in the compliance of the fibrils can compensate for both
the substrate roughness and the attachment strength variation. We also show that, as the
number of fibrils n increases, the load-carrying efficiency of each fibril goes down. For large n,
this effect is found to be small. Furthermore, this effect is compensated by the fact that the
standard deviation of the adhesive strength decreases as 1=

ffiffiffi
n

p
.

Keywords: fibrillar interfaces; adhesion strength statistics; random attachment strengths;
random fibril lengths; surface roughness; size effects
1. INTRODUCTION

Fibrillar structures are used in nature for contact and
adhesion by small animals and insects (Scherge & Gorb
2001; Arzt et al. 2003). For example, a tokay gecko’s
feet have approximately half a million fine hairs, called
setae, which allow it to climb vertically and stick upside
down on practically all surfaces. Each of the seta
further splits into 200–1000 finer hairs with flat spatula-
shaped tips having dimension of the order of a few
hundred nanometres (Hiller 1968; Autumn et al. 2000).

Despite having less contact area for a given size of
adhesive material, fibrillar interfaces can be stronger
than flat interfacesmade of the samematerial for several
reasons: (i) in flat interfaces stress concentration
dominates failure around the damage front, whereas
fibrillar structures exhibit redundancy or equal sharing
of loads or both,making them less sensitive to failure of a
few fibrils (Glassmaker et al. 2005); (ii) stress concen-
tration can be eliminated by employing fibrils with
sufficiently small lateral dimensions (Gao et al. 2003;
Gao &Yao 2004; Hui et al. 2004); (iii) fibrillar interfaces
orrespondence (pporwal@iitb.ac.in).
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exhibit greater structural compliance, that is, individual
fibrils can bend or buckle easily, allowing large numbers
of fibrils to make good contact with rough substrates
(Glassmaker et al. 2004); (iv) fibrillar structures can
resist fouling by small particles (Hansen & Autumn
2005; Hui et al. 2006); and (v) in addition to the loss of
surface energy, elastic energy stored in the fibrils is also
lost during detachment (Jagota&Bennison 2002). Since
the elastic energy stored in a fibril is directly pro-
portional to its length, long fibrils are advantageous
from an energy dissipation standpoint. However, there
are limits to the length offibrils since long fibrils can stick
to each other to reduce surface energy—a condition
called lateral collapse (Glassmaker et al. 2004; Greiner
et al. 2007). Since collapsed fibrils do not make good
contact with the substrate, lateral collapse is detri-
mental to adhesion.

Several researchers, motivated by these biological
systems, have recently attempted to mimic the fibrillar
architecture to attain enhanced adhesion (Geim et al.
2003; Sitti & Fearing 2003; Glassmaker et al. 2004;
Gorb et al. 2006). Fabrication of synthetic structures
with a high degree of hierarchy is still technologically
challenging and most of the fibrillar adhesives
J. R. Soc. Interface (2008) 5, 441–448
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fabricated so far are either one- or two-level structures.
The one-level structure typically consists of pillars
having approximately uniform cross-sections and nom-
inally flat tips (Geim et al. 2003; Sitti & Fearing 2003;
Glassmaker et al. 2004; Gorb et al. 2006; Greiner et al.
2007). Although these structures typically show an
increase in adhesion per unit area of actual contact, the
overall adhesion was still less than that of a flat
interface. The most successful designs typically involve
two-level fibrillar structures consisting of an attach-
ment element (e.g. mushroom-shaped element or thin
plate) bonded to the nominally flat tip of the one-
level structure (Gorb et al. 2006; Kim & Sitti 2006;
Glassmaker et al. 2007). The strength and toughness of
these structures are found to be considerably better
than flat interfaces made of the same material.

There is a large literature on the contact mechanics
and adhesion of fibrillar interfaces (Hui et al. 2007).
Many of these works analysed the adhesive interaction
of a single fibril in contact with a substrate. These
works assume that all the material and geometrical
parameters are deterministic, which tend to over-
estimate the adhesive strength of large fibrillar
structures. For example, if van der Waals forces control
adhesive interaction then even small variations in fibril
length can significantly reduce the overall adhesion of
the fibrillar structures. Thus, the detachment of a
fibrillar surface consisting of n fibrils can occur at a
force much less than np for small variations in fibril
lengths, where p is the theoretical detachment strength
of a single fibril obtained using a deterministic analysis.
In a previous work, one of us had studied the effect of
surface roughness or fibril length variation on adhesion
(Hui et al. 2005), where the fibril lengths were assumed
to obey a normal distribution with standard deviation
sN. However, the adhesive strength p was assumed to
be deterministic and was modelled using the Johnson–
Kendall–Roberts theory (Johnson et al. 1971). Similar
analysis was also carried on a hierarchical structure by
Kim & Bhushan (2007).

In the work by Hui et al. (2005), only the mean
strength of the fibrillar structure was determined. The
problem of finding the probability distribution function
of adhesive strength of the fibrillar structure, given the
distribution function for length and tip attachment
strength, is much more complicated and cannot be
obtained based on the analysis employed by Hui et al.
(2005). It is the intention of the present work to offer a
solution to this problem.
2. DESCRIPTION OF MODEL

Consider a fibrillar surfacewith a very large number, n, of
fibrils. Eachfibril is endowedwithanattachment element
at its tip (e.g. a thin plate-like spatula). We assume that
the attachment elements are of the same type, but can
vary slightly in size and shape. In addition, the surface
profile or roughness of the substratedirectly underneatha
particular attachment element can further influence the
adhesive strength of the element. These effects on
adhesion are local but can influence the overall adhesive
strength if the fibril lengths are not equal. Owing to these
unequal lengths, fibrils will support different loads and
J. R. Soc. Interface (2008)
detach from the substrate in an asynchronous manner,
leading to a reduction in adhesion. Surface roughness also
enhances the effect of unequal fibril lengths, apart from
affecting the attachment strengthdue to local variation in
surface profile.

Since the surface roughness and fibril length
variation have similar effects on the overall behaviour
of the adhesive, we assume the substrate to be smooth
and lump the roughness in the fibril length distribution.
We assume that the attachment strength distributions
account for both the local variation in substrate profile
and the variation in the size and shape of the
attachment element. In this model, both fibril length
and fibril attachment strength are random quantities,
that is, they vary from fibril to fibril.
2.1. Model for fibril length distribution

The lengths of the fibrils are assumed to be independent
and identically distributed random variables. For con-
creteness, in this work the fibrils are assumed to follow
either a normal or a uniformprobability distribution.The
density function for the normal distribution is

fNðl ÞZ
1ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp K
ðlK l 0Þ2

2s2

� �
for KN! l!N;

ð2:1Þ

where l0 and s are the mean and standard deviation,
respectively. For the uniform distribution, the prob-
ability density function is

fUðlÞZ
1

lmaxK lmin

for lmin% l% lmax;

0 otherwise;

8><>: ð2:2Þ

where lmin and lmax are the lower and upper limits for
fibril lengths, respectively. The mean fibril length is
l0Z(lminClmax)/2 and the standard deviation s is

ðlmaxK lminÞ=
ffiffiffiffiffi
12

p
. We shall assume that the cross-

sectional area and Young’s modulus of the fibrils are
deterministic, because small variations in these quan-
tities do not significantly affect the adhesion. The effect of
variations in fibril length and cross-sectional area on
compliance is also small and thus it can also be assumed
deterministic.
2.2. Model for adhesive interaction between an
individual fibril and the substrate

Consider the following pull-off experiment which allows
us to compute the strength statistics of the fibrillar
adhesive. The upper end of the fibrillar structure is
attached to a rigid surface. The fibrillar structure is
brought into contact with a smooth substrate as shown in
figure 1. Let d denote the separation between the rigid
surface and the substrate. We first compress the fibrillar
structure against the substrate, causing some or all of
the fibrils to bend or to become slack, so that all the
attachment elements are in contact with the substrate.
We then increase d in discrete steps until pull-off occurs.
The strength is defined as the maximum force supported

http://rsif.royalsocietypublishing.org/
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Figure 2. Adhesive interaction model, that is, force supported
by an individual fibril, Pi(d ), versus separation between the
rigid surface and substrate, d. Our model is similar in spirit to
the Dugdale–Barenblatt model. Here Pi,max and l i are the
detachment strength and length of the ith fibril.

d

di,p

Figure 1. Schematic of the pull-off experiment, where d is the
separation between the rigid surface and the substrate. The
substrate is assumed to be smooth and di,p denotes the range of
attractive interaction of the ith fibril. Since fibrils have different
lengths, during pull-off a fibril can be in compression, tension or
out of the zone of attractive interaction with zero force.
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by the adhesive in this process and will be defined as the
pull-off force.

The interaction between the attachment element of
a fibril and the substrate (shown to be smooth in
figure 1, since the roughness is taken into account by
the variations in length and attachment strength) is
described below. Since the fibrils are long in comparison
with their lateral dimensions, they are highly compliant
under compressive loads (the role of compliance will be
addressed later). Therefore, we will assume that they do
not support any compressive load. Note that this
approximation will have very little effect on the
maximum pull-off force. Specifically, the force sup-
ported by a fibril, with length l i , is zero when the
separation d is less than its length, that is, when d!l i.
We call this a slack fibril. Mathematically, this
condition is given as follows:

PiðdÞZ 0 for dK l i!0; ð2:3Þ

where Pi is the load on fibril i. As d increases, the slack
in the ith fibril is removed until it becomes fully
straight. We call this a non-slack fibril, which interacts
adhesively with the substrate as long as its tip is within
a distance of di,P away from the surface of the substrate.
We call this region a ‘zone of attractive interaction’
(figures 1 and 2).

The force in a non-slack fibril increases linearly (since
fibrils are elastic) until the attachment strength of the
fibril, Pi,max, is reached. After reaching this maximum,
the force supported by the fibril remains constant as long
as its tip lies in the zoneof attractive interaction.Once the
fibril tip is out of this zone, the force supported by it
becomes zero (figure 2). Specifically,

PiðdÞZ
kðdK l iÞ for0!kðdK l iÞ%Pi;max;

Pi;max forPi;max!kðdK l iÞ%Pi;maxCkdi;p;

0 otherwise;

8><>:
ð2:4Þ

where k is thefibril stiffness.For a cylindrical fibril aligned
perpendicular to the substrate such as those shown in
figure 1, kZEA/l0. For inclined fibrils, the expression for
k can be found in Glassmaker et al. (2004).

The adhesive interaction model in this work is similar
in spirit to the Dugdale–Barenblatt adhesion model
(Dugdale 1960; Barenblatt 1962). Indeed, Pi,max and
Pi,maxdi,p can be identified as the fibril attachment
strength and work to detach a fibril excluding the elastic
J. R. Soc. Interface (2008)
energy stored in the fibril just before detachment,
respectively.Here, these quantities are randomvariables.
To reduce the number of simulations, we assume that
there is a positive correlation between di,p and Pi,max. In
the simulations below we assume that di,pZdi,max/2,
where di,maxZPi,max/k.
2.3. Model for adhesive strength of an individual
fibril

As mentioned above, Pi,max is not deterministic. This is
due to variations in local substrate geometry and
attachment element. In the following, we assume that it
obeys a power-law distribution with the cumulative
probability distribution function

FPðpÞZ
0 for p%0;

ðp=P0Þr for 0!p%P0;

1 for pOP0:

8><>: ð2:5Þ

The probability density function, dFp/dp, is

fPðpÞZ
rprK1=P r

0 for 0!p%P0;

0 otherwise;

(
ð2:6Þ

where P0 and r are the intrinsic adhesive strength (or
scale parameter) and the shape parameter, respectively.
The scale parameter controls the magnitude and the
shape parameter dictates the variability of the attach-
ment strength; the lower the shape parameter the higher
the variability. The mean and standard deviation of the
tip attachment strength for power-law distribution are

rP0/(1Cr) andP0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðrC2ÞKr2=ðrC1Þ2

q
, respectively.
2.4. Normalization

In the following, we normalize all forces by the intrinsic
adhesive strength, P0, lengths by the mean fibril length,
l0, and the stiffness of the fibrils by P0/l0. These

http://rsif.royalsocietypublishing.org/


Table 1. Values of the parameters used for simulation unless
stated otherwise.

simulation parameter value

number of fibrils, n 1000
power-law scale parameter, P0 40 mN
mean fibril length, l0 20 mm
fibril length standard deviation, s 2.89 mm
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normalized variables are denoted by

k̂ Z kl 0=P0; P̂i ZPi=P0;

P̂i;max ZPi;max=P0; P̂ ZP=nP0;

d̂ Z d=l 0; l̂ i Z l i=l 0 and d̂i;p Z di;p=l 0;

ð2:7Þ

where P is the total force acting on the system, that is,

Ph
Xn
iZ1

PiðdÞ: ð2:8Þ

Using these normalized variables, equations (2.4) and
(2.8) become

P̂iðd̂ÞZ
k̂ðd̂Kl̂ iÞ for 0!k̂ðd̂Kl̂ iÞ!P̂i;max;

P̂i;max for P̂i;max!k̂ðd̂Kl̂ iÞ!P̂i;maxCk̂d̂p;

0 otherwise;

8>><>>:
ð2:9Þ

P̂ðd̂Þh1

n

Xn
iZ1

P̂iðd̂Þ: ð2:10Þ

The normalized pull-off force is

P̂pull-offZmaxbd fP̂ðd̂Þg: ð2:11Þ

Note that a normalized pull-off force of unity is obtained
when there is no variability.
3. MONTE CARLO SIMULATION

We performed Monte Carlo simulations to obtain the
pull-off force distribution. All n fibrils have identical
cross-sectional area and stiffness. However, their
lengths and attachment strengths are random quan-
tities obeying the probability distributions described in
§2. The random lengths in each simulation are
generated using the same probability distribution
function, but the random length of an individual fibril
is independent of the others. The same is true for the
attachment strengths of fibrils. For the purpose of
simulation, the fibrils are numbered as 1,., i,., n.
These fibrils have lengths l1,., l i ,., ln and attach-
ment strengths P1,max, ., Pi,max,., Pn,max, which are
generated using the inversion method. For example,
random numbers with cumulative distribution func-
tion, FX, are obtained using

Xi ZFK1
X ðUiÞ; ð3:1Þ

where UiwU[0,1] is a uniform random number in [0,1].
The standard MATLAB random number generator
function rand is used to generate these uniform random
numbers.

In the simulations the normalized fibril stiffness, k̂,
shape parameter, r, and fibril length standard
deviation, s, and number of fibrils, n, are given. The
following steps are performed for each replication:

(i) Random fibril lengths, l1,., l i ,., ln, and fibril
attachment strengths, P1,max, ., Pi,max, .,
Pn,max, are generated.

(ii) The initial separation between the rigid adhesive
surface and substrate is taken to be less than the
length of the shortest fibril so that all the fibril-tip
J. R. Soc. Interface (2008)
attachment elements are in intimate contact with
the substrate. At this stage all the fibrils are either
bent orbuckled, so thenormalized force supported
by the adhesive is P̂ðd̂Þh

Pn
iZ1 P̂iðd̂ÞZ0.

(iii) The separation between the adhesive surface and
the substrate is increased in discrete steps.

(iv) At each step the normalized load supported by
each individual fibril is calculated using equation
(2.9), which in turn is used to calculate the total
normalized force supported by the adhesive
(equation (2.10)).

(v) The separation between the adhesive surface and
substrate is increased until all the fibril-tip
attachment elements lose contact with the sub-
strate and exit the zone of attractive interaction.
At this stage, the load supported by the adhesive
surface is again zero.

(vi) The maximum normalized force supported by the
adhesive surface is the normalized pull-off force,
P̂pull�off , of the adhesive for this replication.

The pull-off force distribution and the strength
means and standard deviations are estimated using
a total of 200 replications for a given set of parameters
(k, r, s, n).
4. NUMERICAL RESULTS

Table 1 shows typical parameters used for the
simulations. These parameters are used unless stated
otherwise. Simulations are performed for both the
normal and the uniform distributions for fibril length.
Figure 3 plots two realizations of the normalized force
versus normalized displacement curves for different
values of r. In all the curves, the initial slope is very
small indicating that only few fibrils are bearing force
(most are slack). As the separation between the
adhesive and substrate, d, is increased, more and
more fibrils are straightened and stretched. In this
regime, the total force increases to a maximum. Also, as
d increases the number of fibrils bearing force increases
and hence the slope of each curve also increases. If the
separation is increased further, the loss in force due to
the pulling out of fibrils from the zone of attractive
interaction exceeds the increase in force due to the
straightening and stretching of fibrils, leading to a
decrease in total force. Eventually, the force supported
by the adhesive becomes zero when all the fibrils are
pulled out of the zone of attractive interaction. Peaks in
these curves (figure 3) correspond to pull-off forces.
These peaks behave differently for fibrils with normal
(exhibiting a distinct peak) and uniform (showing
a much flatter peak) distributions for fibril length.

http://rsif.royalsocietypublishing.org/
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Figure 3. Normalized force supported by the adhesive surface,
P̂, versus normalized separation, d̂, for (a) normal and (b)
uniform distribution for fibril length. Two realizations (out of
200) are plotted for each value of the shape parameter, r. The
value of k is 10 N mK1.
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Figure 4. Cumulative probability distribution function,Gn, of
normalized pull-off force, P̂pull-off , plotted on normal prob-
ability paper for (a) normal and (b) uniform distribution for
fibril length. Here kZ10 N mK1 and curves are labelled by the
values of shape parameter, r. For the significance of
erfK1ð2GnK1Þ, see Appendix A.
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The normalized pull-off force increases with r (higher r
means less variability of the fibril attachment
strength). Near the peak, variation in force is more
pronounced for all the cases (different r, normal or
uniform distribution). In general, effective work of
adhesion (the area under the force/displacement curve)
is higher for the uniform length distribution. Note that
the effective work of adhesion includes the elastic
energy stored in the fibrils due to stretching, which can
be much larger than the intrinsic work of adhesion.

Figure 4 plots the cumulative probability distri-
bution, Gn, for the normalized pull-off force on normal
probability paper. Gn is obtained numerically using the
pull-off force data from the 200 replications of the
Monte Carlo simulation. The linearity of the curves
indicates that the pull-off force follows a normal
distribution for fibrils with both the normal and the
uniform length distributions.

Figure 5 shows how the mean normalized pull-off
force depends on the normalized stiffness of the fibrils
for different values of the shape parameter, r. As the
stiffness decreases, that is, as the compliance increases,
the mean pull-off force increases for all r. As expected,
for a given fibril length standard deviation (approx.
10% of the mean length in figure 5), the pull-off force
increases with decreasing stiffness and decreasing
J. R. Soc. Interface (2008)
variability of the fibril attachment strength. This
demonstrates that compliance can compensate for
roughness and geometric irregularities of the attach-
ments. The simplest way of increasing compliance is to
use inclined or angled fibrils, as recently fabricated by
Aksak et al. (2007).

Figure 6 plots the mean normalized pull-off force
versus the normalized fibril stiffness for different fibril
length standard deviations, s. These curves show that
the pull-off force decreases rapidly with fibril stiffness
for high s or rough surfaces. When the standard
deviation for the length is 4% of the mean, the pull-off
force decreases by more than 50% if k̂ increases up to 20.
These curves exhibit very similar behaviour for both
the normal and the uniform distributions for fibril
length, except that the mean pull-off force is slightly
higher for the normal distribution.
4.1. Effect of number of fibrils on adhesive
strength

We also explore how the number of fibrils affects the
strength behaviour of the fibrillar structure. Figure 7a,b
plots the mean and standard deviation of the

http://rsif.royalsocietypublishing.org/
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normalized pull-off force as a function of the number of
fibrils n. Simulations are carried out only for fibrils
having the normal distribution with rZ1, 5 and
kZ1, 10 N mK1. Figure 7a shows that the mean
normalized pull-off force, that is, the mean pull-off
force per fibril, decreases as n increases. For nR103, this
decrease is very slow; numerically it seems to approach
a limiting value. In other words, if one starts with a
small number of fibrils then each fibril becomes less
effective in bearing load as n increases, although the
overall strength still goes up. However, for large n, this
load-bearing efficiency is approximately independent of
n; hence large fibril bundles are advantageous. In
addition, the normalized standard deviation,

ffiffiffi
n

p
g,

remains constant when plotted against n, indicating
that variability of the pull-off force decreases as n
increases according to

gf1=
ffiffiffi
n

p
: ð4:1Þ

For a bundle where all the fibrils are of equal length but
with attachment strength as a random variable, it is
possible to show that this result follows from classical
bundle theory (Daniels 1945; Phoenix 1974). For the
problem studied in this work, in which the fibril length
is also a random variable, we have not been able to
prove this result mathematically except via simulation.
J. R. Soc. Interface (2008)
5. SUMMARY AND DISCUSSIONS

Monte Carlo simulation technique is used to study
the adhesion statistics of a fibrillar structure consist-
ing of a large number of fibrils. The lengths of the
fibrils are random quantities and two different
distributions (normal and uniform) are used to
characterize them. In addition, the strength of the
attachment element is also random and obeys a
power-law distribution. Our results show that the
pull-off force is approximately normally distributed.
The mean pull-off force decreases rapidly with rough-
ness, but this effect can be compensated by increasing
the fibril compliance. We also studied the effect of
number of fibrils in the adhesive patch and demon-
strated numerically that the mean pull-off force per
fibril decreases as the number of fibrils increases, for
small n. These results are useful since they can be
checked against experiments.

It might seem that the normality of the pull-off
force distribution is a consequence of the central limit
theorem. However, the random variables P̂pull-offZ

maxd̂ P̂ðd̂Þ
n o

occur at different values of the

normalized separation, d̂, for different replications.
This prohibits the direct application of the central
limit theorem. Indeed, the proof of this normality
result is mathematically challenging even for a bundle
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consisting of parallel fibres of identical lengths as
shown by Daniels (1945).

Although we have assumed specific distribution
functions for the purpose of analysis, the technique
presented in this work can be applied to any set of
distributions. Indeed, experiments can be performed to
determine the distribution function for the fibril
attachment strength. For example, Huber et al.
(2005) have studied the adhesive strength of a single
spatula of a gecko and found that this is approximately
11 nN. However, the data in their paper are not
presented in a form that would allow us to determine
the distribution function. A limitation of this work is
our assumption that the compressive preload is
sufficiently large so that initially all the fibrils are in
contact with the substrate. In reality, the degree of
contact depends on the amount of compressive preload.
Nevertheless, the conclusion of this paper is valid since
we are interested in the maximum pull-off force. In
practice, the pull-off force can be smaller and will
depend on the preload, as demonstrated by Schargott
et al. (2006), Aksak et al. (2007), Greiner et al. (2007)
and Kim & Bhushan (2007).

The authors would like to thank Prof. S. L. Phoenix for his
useful discussions and comments. C.Y.H. is supported by a
grant from the National Science Foundation (CMS-
0527785).
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APPENDIX A

The cumulative distribution function for normal
probability is of form

Gn Z
1

2
1Cerf

xKL0ffiffiffiffiffiffi
2s

p
� �� �

;

where erf is the error function. We have plotted
erfK1ð2GnK1Þ; where erfK1 is the inverse error
function, against x ; if we get a straight line, we can
say that Gn is normally distributed.
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